PHYSICAL REVIEW E 66, 026107 (2002
Failure time in the fiber-bundle model with thermal noise and disorder

Antonio Politi} Sergio Ciliberte? and Riccardo Scorretti
1Istitut’o Nazionale di Ottica Applicata, Largo E. Fermi 6, 50125 Firenze, Italy
2Laboratoire de Physique,d®le Normale Superige de Lyon, CNRS UMR 5672, 46 Alld'Italie, 69364 Lyon, France
SEcole Centrale de Lyon, 69131 Ecully, France
(Received 13 December 2001; published 14 August 2002

The average time for the onset of macroscopic fractures is analytically and numerically investigated in the
fiber-bundle model with quenched disorder and thermal noise under a constant load. We find an implicit exact
expression for the failure time in the low-temperature limit that is accurately confirmed by direct simulations.
The effect of the disorder is to lower the energy barrier.
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[. INTRODUCTION breaks. As a consequence of the first failure, the average
stress increases and this may induce further failures. In prac-
The onset of fractures in heterogeneous materials hatgce, it is only when the applied load is large enough that an
been for a long time the subject of many studies in the enavalanche process sets in, giving rise to a complete failure of
gineering community for its obvious technological implica- the system.
tions. More recently, the problem has attracted the interest of In order to take into account thermal fluctuations, in Refs.
the physicist community also, because of its nontrivial sta{9,15,14, it was argued that each single fiber can break at
tistical character. Fractures are, indeed, genuine transieahy time with a probability per unit time proportional to the
phenomena for which it is highly desirable to identify uni- probability of a thermal fluctuation above the critical length
versal laws, but this ambition contrasts with the lack of gen-f the given fiber. As a consequence of thermal fluctuations,
eral tools capable of dealing with nonequilibrium phenom-the pundle can break for any imposed stress, exactly as ex-
ena. As a consequence, many simplified models have beedécted in real systems.
proposed in the attempt to capture the relevant dynamical the mqgified fiber-bundle model has been then studied

properties, without pretending to accurately reproduce th%oth in the homogeneousame breaking threshold for all

m'(}rﬁzg?g@;e;'f‘e erimental investigations of fract res}‘ibers) and heterogeneous case, finding that in the former
: Xperim Investigat . u case, the effective temperature coincides with the thermody-
are actually devoted to clarify many different questions, e.g

the velocity of propagation, the roughness, and the onset (gamlcftemget;]attu(rj[_ﬂS—dlﬂ. In rle_:)ertoge?eous syztetmts ’hlt has
precursors. In this paper we are interested in determining th een found that disorder contributes to modiiybut it has

failure time of a given sample subjected to a constant stres§Ot Vet been developed a sufficiently general treatment and

This the so-called creep test, widely used by engineers ithe res_ults existing so far do pa_lrtly conﬂicf[ with each other
order to estimate the lifetime of a given material as a @nd this prevents drawing definite conclusions.
function of the applied stress. It would be obviously very It is precisely the goal of this paper to develop a general
desirable to construct a theory able to predict the failure tim@pPproach for dealing with heterogeneous systems in the low-
upon the knowledge of a few ingredients and without havingemperature limit. We shall show that disorder contributes as
to perform experimental tests under different stress condia multiplicative correction that can equivalently be inter-
tions. preted either as an amplification of the temperature or a low-

Several author$l—4] conjectured that the fracture is a ering of the energy barrier. Similar conclusions on the role of
thermal activated process whose effective temperafgge  disorder in the crack activation processes have been reached
should coincide with the thermodynamic temperaflir€ev- by other author$18].
eral experimental observatiofS—7] seem to indicate that In the following section, we briefly recall the results ob-
the activation model proposed by Pomeau predicts correctlyained in the two previous papers that have dealt with the
the dependence afon the applied stress. Conversely, all the same model. In Sec. Il we derive and solve the dynamical
experiment§5-7] indicate that the effective temperature in equations that allow us to determine the scaling behavior for
strongly heterogeneous materials can be several orders e average failure time. The last section is devoted to con-
magnitude larger thaf, or, equivalently, the energy barrier clusions and an outline of future perspectives.
is smaller than what theoretically predicted.

The need to clarify this problem has led Guarino and co-
v_\/orkgrs[8,9] to suitably modify the fiber—bundle.model, ini- Il. PREVIOUS RESULTS
tially introduced[10,11 as a purely deterministic model to
describe the behavior of an ensemble of fibers, all of them Initially, the interest has been devoted to study the behav-
subjected to the same load but with different breaking threshior of homogeneous bundles, composed\dfibers. In both
olds[12-14. In the original model, upon increasing the ap- Refs.[15,17), it has been found that, in the limit d{— oo,
plied stress from zero nothing happens until the weakest fibeghe average failure time is
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20T F{(l_ fO)Z} possible to discusa priori its validity in the small tempera-
T= ,

>T (1)  ture limit, when the analogy with activation processes be-

f
Yo comes more transparent.

whereT is the temperature scaled to the bond energy at the
breaking thresholdT= kBT/YE,LVhereY is the elastic con-

stantkg the Boltzmann constarnf, the absolute temperature,  Let us start by denoting witlfi,(t) the force exerted at
and ¢ the critical length, f, is the imposed average force time t on a fiber whose critical force i According to the
(scaled toY¢), and 1k is the time scale of the thermal original formulation of the problem, in the presence of ther-
fluctuations. Thus, in this specific case, the energy barrier t§1al noise, the force applied on each fiber exhibits Gaussian
be overcome in order to break the fiber bundle Us fluctuations around an average vafye Therefore, the prob-

=Y{€?(1—f,)?/2. Moreover, RouX17] showed that the av- ability per unit time to break a fiber characterized by a
erage failure time of the first fiber is thresholdf is proportional to the probability for a fluctuation

to overcome the assigned threshold, i.e.,
2ml1—"fy, [(1—fy)? 5
=/ = . (f—fa)
ENT N ex’{ 2T -7 (7)

Accordingly, we see that the expon.enti.al factor is the same iQvhereT is the working temperature, whilg is a constant
both the expression for and 7, indicating that the activat-  fixing the time scale for the process. In the small temperature
ing energy is the same for both processes. limit, we will see that the most relevant contribution to the
The disordered case is more easily studied under the agner hreakdown occurs in the tail of the distribution, where
sumption of a Gaussian distribution of the breaking threshy,e can approximate the error function with a Gaussian. Ac-

oldsf, cordingly, we assume that

Y T (f—f,)?
exp[—( "l 3) G(f—fa)=%\/zexp{— . } )

2T, a

IIl. MODEL SOLUTION

@ G(f—fa)zg(l—erf

1
f:
PO T,

where the variancd 3y measures the amount of quenched o :

disorder present in the bundle. In order to be precise, ong1e dlstﬂbutlon Q(F.1) c_)f unbroken bond_s at time

should restrict the definition dP(f) to positive values, but L(Q(F,0)=P(f)). The fraction of broken bonds is, therefore,

we shall see in the following section that in the regime we .

are interested in, this initial anomaly disappears immediately (D(t)zl—j dfQ(f,t), 9)

without causing any trouble. —
With the above assumption, Roux determined again the

average failure time of the first fiber, finding and the average forck, exerted on each fiber at timds
B [ 27 1-1, (1—14)?
ENTET, N CHoTETy
where fq is the initial average force. The definition of the

Accordingly, he concluded that the effect of disorder is tomodel is completed by the dynamical equation @(f,t),
introduce an additive shift on the effective temperature.

Let us now introduce the relevant dynamical variable, i.e.,

On the other hand, Cilibertet al.[15,16], performing an Q(f t)=—Q(f,1)G(f—f,). (11
analytic approximate calculation, found a multiplicative cor-
rection, namely, A similar model has been studied in Rgf9] in connection
to the investigation of seismic activation, the main difference
(1—fg)? being that in their case, the breaking rate is given rather than
T=To eXF{T}, (5)  being self-consistently determined. It is precisely the result-
eff ing time dependence df, (determined by the integral @
with over allf values which makes Eq(11) difficult to solve.
Before passing to the analytical calculations, let us dis-
cuss the numerical integration of Ed.1). We find it conve-
o= T . ©6) nient to introduce the variable
(1 2(1_f0)) SEO= 12

Since one cannot control the accuracy of the approximationgepresenting the fraction of unbroken bonds at timger
involved in the determination of the above formula, it is notclass of fibers with thresholds betwekeandf+df. In fact,
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FIG. 3. The “probability” R(x) scaled to unit variance and
shifted around the center of mass for the same values as in the
previous figure and the same notatidese the body of the text for
the definition ofx).

FIG. 1. Position of the fronS at times 6.6 10'%, 6.6x 105,
5.5x 10'°, 6.6x 10, 8.5x 107, 3.3x 10?2 (from left to right in a
simulation withT=10"3, T4=102, and y=1. All the variables
reported in this and in the following figures are dimensionless.

. . o . Besides observing the independence of the shape on the
the evolution ofSprovides an insightful representation of the . S ; S
.temperature, notice also the strong similarity with distribu-

fracture process. As one might have expected, we see in F'%bns obtained for extreme-value statisti@0—22. This is

1 that the breakdown of the bundle starts from the Weake(r;ertainl not a surprise, since the tail B{x) consists of
fibers to progressively affect the more robust ones. Less ob* y prise,

vious, is that the fracture appears to proceed as a moviné;/fﬁésc}gg’;ﬁ;:?g’tgr;\]/gv% tt?]:tei:Qﬁgiggg'ggi}%ﬁgzgy
front with constant shape. Moreover, the temporal spacing o

the various fronts reported in Fig. 1 reveals a progressivcg'hsmbljt';)rt}]gj’?Z f|t3 .E)rems?ly. theR(f). '(l'thS Spe?'ﬂf[:h
slowing down of the evolution. This latter feature will turn Shape o () and its scale invariance deserve further

. . - . investigations, but here we are more interested in describin
outto be the crucial point for understanding the scaling prop;[he ten?poral evolution of the fracture process. To this goal itg

erties of the whole process. . : X L
The increasing slowness of the bond breakdown is bette'IE,more 'mpO”a”F to nOt'Ce that the standard deviatiprof .
(f) goes to 0 linearly withrl. This can be clearly seen in

I looki he fi ivati . Th - .
revealed by looking at the time derivative &. The mono Fig. 4, where we have reportat, versusT for Ty= 102

tonic decrease ob preceding the final macroscopic fractureé yhere it can also be seen that the proportionality constant is
(see Fig. 2 indicates that one cannot estimate the averagg s oximately equal to)4Notice that the linear dependence
breaking timer by limiting oneself to follow the initial o' is quite a fast decrease, as thermal fluctuations are on
stages of the process. the order ofT. This suggests that a goddsymptotically

A yet clearer description of the breakdown process is Ob'exact for T—0) approximation consists in assuming a

tained by formally interpreting(f) as the integral of some Heaviside shape fo&(f). Such an approximation has also
probability distributionR’ () [i.e., dSdf=R'(f)]. This al- " advamagg of (p;;ametrizi g el oriori _infinite.
lows also a straightforward identification of the step region’dimensional object such #&(f) with a single variable: the
where the ongoing breakdowns are concentrated at a give;?osition of the stegf,. Equipped with such an assumption,

fun;e. Mc()jre tmt;r.es:hng, Iwe f'r:d th?tt.the Sha%eij(f% IS Q(f,t) can be approximated with a Gaussian truncated be-
Independent o In the slowest evolulion region.e., Where ., oo me threshold =f. Notice that this differs from the

most of the time is spent before the final breakdpwirhis hypothesis formulated in Ref§15,16, where it was as-

can b’e appreciate-d in Fig. 3, where we have plofmzd.). sumed thaQ(f,t) remains unchanged fdr>1 while it de-
=o; R(f) for two different temperature values, after shifting creases linearly to 0 fof<1 with a slope to be determined

the distribution around the average valu@nd scalingf to self-consistently.
the rmso, [i.e.,x=(f—f)/o,].
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FIG. 4. The standard deviatian, of R’ (f), computed when the
time derivative of® is minimum, versus the temperaturdor fixed
disorderT4=10"2. In the inset, we can appreciate the small devia-

tions from a purely linear behavior.

FIG. 2. Time derivative ofb versus time foiTy=10"2 and two
different values of the temperatur€=5x10"* (solid curve, T
=102 (dashed curve
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By integrating Eq.(11) over f, we obtain the one- U ' ' ' '
dimensional differential equation

b /TJoc df (1—1)2 (f—f4)2
T 27 VT fsf—faex T oty PR o

0.1

(13) 0.05
where the dependence @b in the right-hand side is con-
taingd inf, [sge Eq.(10)] and in fg through the following 05 R X /A Y R Y TR oY
obvious equation: T4
1 fo (1— f)z FIG. 5. The effective barrier enerdy as determined from the
b= df exp{ — —} (14) numerical solution of the Eq21) (solid line). The two circles refer
V27 Tg) == 2Tq to the extrapolated value of) from direct numerical simula-

) » ) ) tions. The dashed line refers to the perturbative fornf2®, while
Upon suitably rewriting the product of two Gaussians in Eq.the dotted line corresponds to the approximated solugon
(13), we obtain

N _f)2 _£)2
e y\ﬁ (1—fo)? f df (f—fp)2 B PARAL ex;{—(l fo)? | (fo—f)?)
“ 27 VT,2H T oy fsf—faex T ToT, | 2m(fs— o) (fs—fp) 2(T+Ty) 2T,
(15 (18
An upper bound tor can be obtained by determining the
where maximum of
T+1f,Ty :
= 7(P)=1/D (D). (19
=TT, (16) ( (

Such an estimate would be exact only in the case of a con-
and stant derivative: although we have seen in Fig. 2 that this is
not the case, it is nevertheless true that most of the time is
= TTq _ (17) spent near the minimum of the derivative, so that we can
T+Ty expect that the above estimate is rather accurate. With no
pretense of estimating prefactors, let us pay attention only at

Several observations are now in order. The dependence qRe exponential factors in the above equation. In the sfall

the temperature is very different in the two exponentials. Thgimit, the first contribution is negligible, and thus we write
variance in the term out of the integral is the sum of the true

and disorder temperature. This is the contribution that was (f3 —fg)2 U

already singled out by Roux in Rdfl7]. The second term, In 7~ o1 T T (20
instead, exhibits a dependence as if the two temperatures

were in parallel. Now, it is important to establish which term\yheref* andf* are thef, andf, values yielding the mini-
is the leading one in determining the relevant time scale. A?‘num(b. U=(f* — *)2/2 can be interpreted as the effective

g)vno?uatlgr??sféég?rilfexggniﬂtelﬂirlsntt?grrr%l ISH(o)\tvce)::;jeerr %gnig ;hci energy barrier to be overcome in the activation process to
y : ' give rise to the final breakdown. It is instructive to notice

\g{gate; i?]ptﬂznlf(n?itt (l)?‘a\llsetr E)s«r:nea?I}ch‘)l'rotgiesc\L/;rsytr?irsSt oailrr:'? vlvaest that U is smaller than the height in the homogeneous case
g Y y point, [(1—fp)?/2] for two reasonsi(i) f, increases tof% as a

must keep in mind all the variouss that are involved in the o )
consequence of the initial “easy” ruptures that occur on

Fc:?c(iaesaspgfi ; dgteoneerg:cémaiaitg? :;rg é?faéé)ih;h%(?;/ ertﬁge short time scaleg(i) the most populated class of thresholds
' ’ “wE__qQn * iyt .
threshold of the weaker fiber to break, andf6t) the most f=1" decreases tds , t_he Cf”!ca' force abovg which the
numerous fibers to brea¢ still alive). process starts accelerating giving eventually rise to an ava-
lanche. The®* value corresponding to the maximum of

If Tis very small, it is by far easier to break the few fibers , ; ,
whose threshold is just above the applied fofgethan the () (and, in tum, the value& andf3) can be determined

many fibers with high threshold. This implies that in the veryrom the zero of the derivative of(®). From Eq.(20),
beginning of the fracture process, it has generated a gap bEking into account E¢(14), one obtains

tween the force needed to break the weakest fibers and the 2

average applied force, leading to a picture analogous to that (1- d*)2= fo exp{(l_ fs)
for the homogeneous case. Under such conditibps;fg ,/szd 2Ty
and the integral is dominated by the amplitude of the inte-

grand at the left extremunfy of the integration domain. Equation(21), together with Eq(14), determines the critical
Upon computing the leading contribution to the integral invalue®* and thus the effective height of the energy bar-
Eq. (15), we can write rier. In Fig. 5 we have plottetd versusTy. As expected, in

(21)
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the limit T;—0, U converges to 1/8, the height in the ab- T |00
sence of disorder fofy=1/2 (the value fixed in our numeri-

cal simulations The decrease & with T4 confirms that the
presence of disorder helps the fracture process, making it
more probable. In the limit of smally, ®* tends to 0 and
one can perform a perturbative calculation, obtaining

1/2

1-fg)?
w%—(l—fowﬂf

1 1 1
10 500 1000 1500 2000
1T

2| fo_|

_1/2] FIG. 6. The rupture time versus the inverse temperature for two
+

(22 different values of the disorder temperature as determined from the
integration of the simplified one-dimensional Ef3): the solid and

. _1n-2 _ 3~
The two terms contributing to the deviation from the homo—daShed. lines rgfer 04=10 ande. 5107 C'.rdes correspond
to the integration of the full equation. In the inset we report the

geneous case ar_lse, respectively, from the decrea#@ of energy barriet) determined as the local logarithmic derivativerof
below 1 and the increase f abovefg . Both corrections it respect to 1.
are approximately of the same order, i.¢T,4. It is only by
looking at the logarithmic correction that we can conclude
that the former contribution is the largest one. It is presum-
ably the presence of such corrections that makes the validity The analytical treatment developed in this paper confirms
range of this perturbative calculation so small, as it can bghe claim that the presence of disorder contributes to increas-
seen by looking at the dashed line in Fig. 5. In the samgng the effective temperature of a sample subject to a con-
figure, we have reported also the analytic soluti6h ob-  stant joad. Equivalently, but perhaps more physically, one
tained in Ref[15]: its closeness to the perturbative solution can state that disorder renormalizes the barrier height to be
suggests that the result is rather robust against approximayercome in order to give rise to a macroscopic failure of the
tions made on the shape Qf(f,1). . _ fiber bundle. This scenario can be understood by noticing

We conclude the analysis, by comparing these theoreticghat the fracture evolves through a sequence of many irre-
predictions with the outcome of numerical simulations per-grsiple processes. After the failure of the weakest fibers, the
formed both by integrating the one-dimensional Bj) and  system cannot any longer come back to its initial state,
the original model. In Fig. 6, we have plotted the ruptureypile, at the same time, the energy barrier has lowered. A
time versus T for two different values of the disorder tem- ¢orrect estimation of the time scale for observing the onset of
peratureTy. The rather clean linear behavior confirms thea macroscopic failure is obtained by determining the time
scaling behavior expected for an activation process. In fact, §cale for the slowest of such intermediate steps.
is necessary to look at the local logarithmic derivativerof From the way this result has been obtained, there is no
(which corresponds t&J) to see deviations from linearity reason to suspect that it follows from some peculiarity of the
(see the insgtand even this analysis indicates that deviationsiper-bundle model with quenched noise. As, indeed, sug-
from linearity vanish fofT— 0. By comparing the full circles  gested by experimental results, it is natural to conjecture that
with the solid line, we can instead appreciate the validity ofthe presence of noise lowers the energy barrier also in more
the truncated-Gaussian approximation, since the circles refegalistic setups. It becomes desirable now to implement more
to the integration of the full model, while the solid line arises genera| tools to go beyond mean field models.
from the one-dimensional approximation.

We are now in the position to compare the valuelhf
extrapolated from numerical simulations, with the theoretical ACKNOWLEDGMENT
prediction plotted in Fig. 5. The fact that the two circles fall
precisely on top of the theoretical curve further confirm the One of us(A.P.) wishes to thank the ENS Lyon for the
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IV. CONCLUSIONS AND PERSPECTIVES

validity of the whole approach. invitation that allowed us to begin this work.
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