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Failure time in the fiber-bundle model with thermal noise and disorder
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The average time for the onset of macroscopic fractures is analytically and numerically investigated in the
fiber-bundle model with quenched disorder and thermal noise under a constant load. We find an implicit exact
expression for the failure time in the low-temperature limit that is accurately confirmed by direct simulations.
The effect of the disorder is to lower the energy barrier.
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I. INTRODUCTION

The onset of fractures in heterogeneous materials
been for a long time the subject of many studies in the
gineering community for its obvious technological implic
tions. More recently, the problem has attracted the interes
the physicist community also, because of its nontrivial s
tistical character. Fractures are, indeed, genuine trans
phenomena for which it is highly desirable to identify un
versal laws, but this ambition contrasts with the lack of ge
eral tools capable of dealing with nonequilibrium pheno
ena. As a consequence, many simplified models have b
proposed in the attempt to capture the relevant dynam
properties, without pretending to accurately reproduce
microscopic details.

Theoretical and experimental investigations of fractu
are actually devoted to clarify many different questions, e
the velocity of propagation, the roughness, and the onse
precursors. In this paper we are interested in determining
failure time of a given sample subjected to a constant str
This the so-called creep test, widely used by engineer
order to estimate the lifetimet of a given material as a
function of the applied stress. It would be obviously ve
desirable to construct a theory able to predict the failure t
upon the knowledge of a few ingredients and without hav
to perform experimental tests under different stress co
tions.

Several authors@1–4# conjectured that the fracture is
thermal activated process whose effective temperatureTe f f
should coincide with the thermodynamic temperatureT. Sev-
eral experimental observations@5–7# seem to indicate tha
the activation model proposed by Pomeau predicts corre
the dependence oft on the applied stress. Conversely, all t
experiments@5–7# indicate that the effective temperature
strongly heterogeneous materials can be several order
magnitude larger thanT, or, equivalently, the energy barrie
is smaller than what theoretically predicted.

The need to clarify this problem has led Guarino and
workers@8,9# to suitably modify the fiber-bundle model, in
tially introduced@10,11# as a purely deterministic model t
describe the behavior of an ensemble of fibers, all of th
subjected to the same load but with different breaking thre
olds @12–14#. In the original model, upon increasing the a
plied stress from zero nothing happens until the weakest fi
1063-651X/2002/66~2!/026107~6!/$20.00 66 0261
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breaks. As a consequence of the first failure, the aver
stress increases and this may induce further failures. In p
tice, it is only when the applied load is large enough that
avalanche process sets in, giving rise to a complete failur
the system.

In order to take into account thermal fluctuations, in Re
@9,15,16#, it was argued that each single fiber can break
any time with a probability per unit time proportional to th
probability of a thermal fluctuation above the critical leng
of the given fiber. As a consequence of thermal fluctuatio
the bundle can break for any imposed stress, exactly as
pected in real systems.

The modified fiber-bundle model has been then stud
both in the homogeneous~same breaking threshold for a
fibers! and heterogeneous case, finding that in the form
case, the effective temperature coincides with the thermo
namic temperature@15–17#. In heterogeneous systems, it h
been found that disorder contributes to modifyT, but it has
not yet been developed a sufficiently general treatment
the results existing so far do partly conflict with each oth
and this prevents drawing definite conclusions.

It is precisely the goal of this paper to develop a gene
approach for dealing with heterogeneous systems in the l
temperature limit. We shall show that disorder contributes
a multiplicative correction that can equivalently be inte
preted either as an amplification of the temperature or a l
ering of the energy barrier. Similar conclusions on the role
disorder in the crack activation processes have been rea
by other authors@18#.

In the following section, we briefly recall the results o
tained in the two previous papers that have dealt with
same model. In Sec. III we derive and solve the dynam
equations that allow us to determine the scaling behavior
the average failure time. The last section is devoted to c
clusions and an outline of future perspectives.

II. PREVIOUS RESULTS

Initially, the interest has been devoted to study the beh
ior of homogeneous bundles, composed ofN fibers. In both
Refs. @15,17#, it has been found that, in the limit ofN→`,
the average failure timet is
©2002 The American Physical Society07-1
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t5
A2pT

g f 0
expF ~12 f 0!2

2T G , ~1!

whereT is the temperature scaled to the bond energy at
breaking threshold (T5kBT̄/Y,, whereY is the elastic con-
stant,kB the Boltzmann constant,T̄ the absolute temperature
and , the critical length!, f 0 is the imposed average forc
~scaled toY,), and 1/g is the time scale of the therma
fluctuations. Thus, in this specific case, the energy barrie
be overcome in order to break the fiber bundle isU
5Y,2(12 f 0)2/2. Moreover, Roux@17# showed that the av
erage failure time of the first fiber is

t15A2p

T

12 f 0

gN
expF ~12 f 0!2

2T G . ~2!

Accordingly, we see that the exponential factor is the sam
both the expression fort andt1, indicating that the activat-
ing energy is the same for both processes.

The disordered case is more easily studied under the
sumption of a Gaussian distribution of the breaking thre
olds f,

P~ f !5
1

A2pTd

expF2
~ f 21!2

2Td
G , ~3!

where the varianceTd measures the amount of quench
disorder present in the bundle. In order to be precise,
should restrict the definition ofP( f ) to positive values, but
we shall see in the following section that in the regime
are interested in, this initial anomaly disappears immedia
without causing any trouble.

With the above assumption, Roux determined again
average failure time of the first fiber, finding

t15A 2p

T1Td

12 f 0

N
expF ~12 f 0!2

2~T1Td!G . ~4!

Accordingly, he concluded that the effect of disorder is
introduce an additive shift on the effective temperature.

On the other hand, Cilibertoet al. @15,16#, performing an
analytic approximate calculation, found a multiplicative co
rection, namely,

t5t0 expF ~12 f 0!2

2Te f f
G , ~5!

with

Te f f5
T

S 12
A2pTd

2~12 f 0!
D 2 . ~6!

Since one cannot control the accuracy of the approximat
involved in the determination of the above formula, it is n
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possible to discussa priori its validity in the small tempera-
ture limit, when the analogy with activation processes b
comes more transparent.

III. MODEL SOLUTION

Let us start by denoting withf a(t) the force exerted a
time t on a fiber whose critical force isf. According to the
original formulation of the problem, in the presence of th
mal noise, the force applied on each fiber exhibits Gauss
fluctuations around an average valuef a . Therefore, the prob-
ability per unit time to break a fiber characterized by
thresholdf is proportional to the probability for a fluctuatio
to overcome the assigned threshold, i.e.,

G~ f 2 f a!5
g

2 H 12erf F2
~ f 2 f a!2

2T G J , ~7!

whereT is the working temperature, whileg is a constant
fixing the time scale for the process. In the small temperat
limit, we will see that the most relevant contribution to th
fiber breakdown occurs in the tail of the distribution, whe
we can approximate the error function with a Gaussian. A
cordingly, we assume that

G~ f 2 f a!5
g

f 2 f a
A T

2p
expF2

~ f 2 f a!2

2T G . ~8!

Let us now introduce the relevant dynamical variable, i
the distribution Q( f ,t) of unbroken bonds at time
t „Q( f ,0)5P( f )…. The fraction of broken bonds is, therefor

F~ t ![12E
2`

1`

d f Q~ f ,t !, ~9!

and the average forcef a exerted on each fiber at timet is

f a5
f 0

12F
, ~10!

where f 0 is the initial average force. The definition of th
model is completed by the dynamical equation forQ( f ,t),

Q̇~ f ,t !52Q~ f ,t !G~ f 2 f a!. ~11!

A similar model has been studied in Ref.@19# in connection
to the investigation of seismic activation, the main differen
being that in their case, the breaking rate is given rather t
being self-consistently determined. It is precisely the res
ing time dependence off a ~determined by the integral ofQ
over all f values! which makes Eq.~11! difficult to solve.

Before passing to the analytical calculations, let us d
cuss the numerical integration of Eq.~11!. We find it conve-
nient to introduce the variable

S~ f ,t !5
Q~ f ,t !

P~ f !
, ~12!

representing the fraction of unbroken bonds at timet per
class of fibers with thresholds betweenf and f 1d f . In fact,
7-2
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the evolution ofSprovides an insightful representation of th
fracture process. As one might have expected, we see in
1 that the breakdown of the bundle starts from the wea
fibers to progressively affect the more robust ones. Less
vious, is that the fracture appears to proceed as a mo
front with constant shape. Moreover, the temporal spacin
the various fronts reported in Fig. 1 reveals a progress
slowing down of the evolution. This latter feature will tur
out to be the crucial point for understanding the scaling pr
erties of the whole process.

The increasing slowness of the bond breakdown is be
revealed by looking at the time derivative ofF. The mono-
tonic decrease ofḞ preceding the final macroscopic fractu
~see Fig. 2! indicates that one cannot estimate the aver
breaking timet by limiting oneself to follow the initial
stages of the process.

A yet clearer description of the breakdown process is
tained by formally interpretingS( f ) as the integral of some
probability distributionR8( f ) @i.e., dS/d f5R8( f )#. This al-
lows also a straightforward identification of the step regio
where the ongoing breakdowns are concentrated at a g
time. More interesting, we find that the shape ofR8( f ) is
independent ofT in the slowest evolution region~i.e., where
most of the time is spent before the final breakdown!. This
can be appreciated in Fig. 3, where we have plottedR(x)
5sr R8(f) for two different temperature values, after shiftin
the distribution around the average valuef̄ and scalingf to
the rmss r @i.e., x5( f 2 f̄ )/s r#.

FIG. 1. Position of the frontS at times 6.631013, 6.631016,
5.531019, 6.631013, 8.531021, 3.331023 ~from left to right! in a
simulation withT51023, Td51022, and g51. All the variables
reported in this and in the following figures are dimensionless.

FIG. 2. Time derivative ofF versus time forTd51022 and two
different values of the temperature,T5531024 ~solid curve!, T
51023 ~dashed curve!.
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Besides observing the independence of the shape on
temperature, notice also the strong similarity with distrib
tions obtained for extreme-value statistics@20–22#. This is
certainly not a surprise, since the tail ofR(x) consists of
events that, over time, proved to be anomalous. The accu
of the data allows us to show that in this case the Gumb
distribution @21,22# fits precisely theR( f ). This specific
shape of theR8( f ) and its scale invariance deserve furth
investigations, but here we are more interested in describ
the temporal evolution of the fracture process. To this goa
is more important to notice that the standard deviations r of
R8( f ) goes to 0 linearly withT. This can be clearly seen in
Fig. 4, where we have reporteds r versusT for Td51022

~there, it can also be seen that the proportionality constan
approximately equal to 4!. Notice that the linear dependenc
on T is quite a fast decrease, as thermal fluctuations are
the order ofAT. This suggests that a good~asymptotically
exact for T→0) approximation consists in assuming
Heaviside shape forS( f ). Such an approximation has als
the advantage of parametrizing ana priori infinite-
dimensional object such asS( f ) with a single variable: the
position of the stepf s . Equipped with such an assumptio
Q( f ,t) can be approximated with a Gaussian truncated
low some thresholdf 5 f s . Notice that this differs from the
hypothesis formulated in Refs.@15,16#, where it was as-
sumed thatQ( f ,t) remains unchanged forf .1 while it de-
creases linearly to 0 forf ,1 with a slope to be determine
self-consistently.

FIG. 3. The ‘‘probability’’ R(x) scaled to unit variance and
shifted around the center of mass for the same values as in
previous figure and the same notations~see the body of the text fo
the definition ofx).

FIG. 4. The standard deviations r of R8( f ), computed when the
time derivative ofF is minimum, versus the temperatureT for fixed
disorderTd51022. In the inset, we can appreciate the small dev
tions from a purely linear behavior.
7-3
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By integrating Eq. ~11! over f, we obtain the one-
dimensional differential equation

Ḟ5
g

2p
A T

Td
E

f s

` d f

f 2 f a
expF2

~12 f !2

2Td
GexpF2

~ f 2 f a!2

2T G ,
~13!

where the dependence onF in the right-hand side is con
tained in f a @see Eq.~10!# and in f s through the following
obvious equation:

F5
1

A2pTd
E

2`

f s
d f expF2

~12 f !2

2Td
G . ~14!

Upon suitably rewriting the product of two Gaussians in E
~13!, we obtain

Ḟ5
g

2p
A T

Td
expF2

~12 f a!2

2~T1Td!G Ef s

` d f

f 2 f a
expF2

~ f 2 f b!2

2Tb
G ,

~15!

where

f b5
T1 f aTd

T1Td
~16!

and

Tb5
TTd

T1Td
. ~17!

Several observations are now in order. The dependenc
the temperature is very different in the two exponentials. T
variance in the term out of the integral is the sum of the t
and disorder temperature. This is the contribution that w
already singled out by Roux in Ref.@17#. The second term
instead, exhibits a dependence as if the two temperat
were in parallel. Now, it is important to establish which ter
is the leading one in determining the relevant time scale.
long asf b. f s , the exponential integral is of order 1 and th
evolution is controlled by the first term. However, this is n
what happens~at least except for the very first and la
stages! in the limit of very smallT. To discuss this point, we
must keep in mind all the variousf ’s that are involved in the
process at a generic timet, starting fromf a(t), the average
force applied to each unbroken fiber, going tof s(t), the
threshold of the weaker fiber to break, and tof b(t) the most
numerous fibers to break~if still alive!.

If T is very small, it is by far easier to break the few fibe
whose threshold is just above the applied forcef a than the
many fibers with high threshold. This implies that in the ve
beginning of the fracture process, it has generated a gap
tween the force needed to break the weakest fibers and
average applied force, leading to a picture analogous to
for the homogeneous case. Under such conditions,f b, f s
and the integral is dominated by the amplitude of the in
grand at the left extremumf s of the integration domain
Upon computing the leading contribution to the integral
Eq. ~15!, we can write
02610
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Ḟ5
gATTd

2p~ f s2 f a!~ f s2 f b!
expF2

~12 f a!2

2~T1Td!
1

~ f s2 f b!2

2Tb
G .
~18!

An upper bound tot can be obtained by determining th
maximum of

t~F!51/Ḟ~F!. ~19!

Such an estimate would be exact only in the case of a c
stant derivative: although we have seen in Fig. 2 that thi
not the case, it is nevertheless true that most of the tim
spent near the minimum of the derivative, so that we c
expect that the above estimate is rather accurate. With
pretense of estimating prefactors, let us pay attention onl
the exponential factors in the above equation. In the smaT
limit, the first contribution is negligible, and thus we write

ln t'
~ f s* 2 f a* !2

2T
[

U

T
, ~20!

where f s* and f a* are thef s and f a values yielding the mini-

mum Ḟ. U[( f s* 2 f a* )2/2 can be interpreted as the effectiv
energy barrier to be overcome in the activation process
give rise to the final breakdown. It is instructive to notic
that U is smaller than the height in the homogeneous c
@(12 f 0)2/2# for two reasons:~i! f 0 increases tof a* as a
consequence of the initial ‘‘easy’’ ruptures that occur
short time scales;~ii ! the most populated class of threshol
‘‘ f 51’’ decreases tof s* , the critical force above which the
process starts accelerating giving eventually rise to an a
lanche. TheF* value corresponding to the maximum o
t(F) ~and, in turn, the valuesf s* and f a* ) can be determined
from the zero of the derivative oft(F). From Eq. ~20!,
taking into account Eq.~14!, one obtains

~12F* !25
f 0

A2pTd

expF ~12 f s* !2

2Td
G . ~21!

Equation~21!, together with Eq.~14!, determines the critica
valueF* and thus the effective heightU of the energy bar-
rier. In Fig. 5 we have plottedU versusTd . As expected, in

FIG. 5. The effective barrier energyU as determined from the
numerical solution of the Eq.~21! ~solid line!. The two circles refer
to the extrapolated value ofU from direct numerical simula-
tions. The dashed line refers to the perturbative formula~22!, while
the dotted line corresponds to the approximated solution~5!.
7-4
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the limit Td→0, U converges to 1/8, the height in the a
sence of disorder forf 051/2 ~the value fixed in our numeri
cal simulations!. The decrease ofU with Td confirms that the
presence of disorder helps the fracture process, makin
more probable. In the limit of smallTd , F* tends to 0 and
one can perform a perturbative calculation, obtaining

U5
~12 f 0!2

2
2~12 f 0!ATdH F2 lnS f 0

A2pTd
D G 1/2

1F2 lnS f 0

A2pTd
D G21/2J . ~22!

The two terms contributing to the deviation from the hom
geneous case arise, respectively, from the decrease of s*
below 1 and the increase off a above f 0* . Both corrections
are approximately of the same order, i.e.,ATd. It is only by
looking at the logarithmic correction that we can conclu
that the former contribution is the largest one. It is presu
ably the presence of such corrections that makes the val
range of this perturbative calculation so small, as it can
seen by looking at the dashed line in Fig. 5. In the sa
figure, we have reported also the analytic solution~5! ob-
tained in Ref.@15#: its closeness to the perturbative soluti
suggests that the result is rather robust against approx
tions made on the shape ofQ( f ,t).

We conclude the analysis, by comparing these theore
predictions with the outcome of numerical simulations p
formed both by integrating the one-dimensional Eq.~13! and
the original model. In Fig. 6, we have plotted the ruptu
time versus 1/T for two different values of the disorder tem
peratureTd . The rather clean linear behavior confirms t
scaling behavior expected for an activation process. In fac
is necessary to look at the local logarithmic derivative ot
~which corresponds toU) to see deviations from linearity
~see the inset! and even this analysis indicates that deviatio
from linearity vanish forT→0. By comparing the full circles
with the solid line, we can instead appreciate the validity
the truncated-Gaussian approximation, since the circles r
to the integration of the full model, while the solid line aris
from the one-dimensional approximation.

We are now in the position to compare the value ofU,
extrapolated from numerical simulations, with the theoreti
prediction plotted in Fig. 5. The fact that the two circles f
precisely on top of the theoretical curve further confirm t
validity of the whole approach.
J.

.
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IV. CONCLUSIONS AND PERSPECTIVES

The analytical treatment developed in this paper confir
the claim that the presence of disorder contributes to incre
ing the effective temperature of a sample subject to a c
stant load. Equivalently, but perhaps more physically, o
can state that disorder renormalizes the barrier height to
overcome in order to give rise to a macroscopic failure of
fiber bundle. This scenario can be understood by notic
that the fracture evolves through a sequence of many i
versible processes. After the failure of the weakest fibers,
system cannot any longer come back to its initial sta
while, at the same time, the energy barrier has lowered
correct estimation of the time scale for observing the onse
a macroscopic failure is obtained by determining the ti
scale for the slowest of such intermediate steps.

From the way this result has been obtained, there is
reason to suspect that it follows from some peculiarity of
fiber-bundle model with quenched noise. As, indeed, s
gested by experimental results, it is natural to conjecture
the presence of noise lowers the energy barrier also in m
realistic setups. It becomes desirable now to implement m
general tools to go beyond mean field models.
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FIG. 6. The rupture time versus the inverse temperature for
different values of the disorder temperature as determined from
integration of the simplified one-dimensional Eq.~13!: the solid and
dashed lines refer toTd51022 andTd551023. Circles correspond
to the integration of the full equation. In the inset we report t
energy barrierU determined as the local logarithmic derivative oft
with respect to 1/T.
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